Data

Elements

The followig data are currently available:

Name Type Comment Unit Data Source
abundance_crust float Abundance in the Earth’s crust mg/kg [21]
abundance_sea float Abundance in the seas mg/L [21]
annotation str Annotations regarding the data    
atomic_number int Atomic number    
atomic_radius float Atomic radius pm  
atomic_radius_rahm float Atomic radius by Rahm et al. pm [38]
atomic_volume float Atomic volume cm3/mol  
atomic_weight float Atomic weight[1]   [30][55]
atomic_weight_uncertainty float Atomic weight uncertainty[1]   [30][55]
block int Block in periodic table    
boiling_point float Boiling temperature K  
c6 float C_6 dispersion coefficient in a.u. a.u. [13][47]
c6_gb float C_6 dispersion coefficient in a.u. (Gould & Bučko) a.u. [20]
cas str Chemical Abstracts Serice identifier    
covalent_radius_bragg float Covalent radius by Bragg pm [10]
covalent_radius_cordero float Covalent radius by Cerdero et al.[2] pm [16]
covalent_radius_pyykko float Single bond covalent radius by Pyykko et al. pm [36]
covalent_radius_pyykko_double float Double bond covalent radius by Pyykko et al. pm [35]
covalent_radius_pyykko_triple float Triple bond covalent radius by Pyykko et al. pm [37]
covalent_radius_slater float Covalent radius by Slater pm [44]
cpk_color str Element color in CPK convention HEX [52]
density float Density at 295K g/cm3  
description str Short description of the element    
dipole_polarizability float Dipole polarizability a.u. [58]
discoverers str The discoverers of the element    
discovery_location str The location where the element was discovered    
dipole_year int The year the element was discovered    
electron_affinity float Electron affinity[3] eV [21][6]
electrons int Number of electrons    
en_allen float Allen’s scale of electronegativity[4] eV [26][27]
en_ghosh float Ghosh’s scale of electronegativity   [18]
en_mulliken float Mulliken’s scale of electronegativity eV [31]
en_pauling float Pauling’s scale of electronegativity   [21]
econf str Ground state electron configuration    
evaporation_heat float Evaporation heat kJ/mol  
fusion_heat float Fusion heat kJ/mol  
gas_basicity float Gas basicity kJ/mol [21]
geochemical_class str Geochemical classification   [50]
goldschmidt_class str Goldschmidt classification   [50][51]
group int Group in periodic table    
heat_of_formation float Heat of formation kJ/mol [21]
ionenergy tuple Ionization energies eV [22]
ionic_radii list Ionic and crystal radii in pm pm [43]
is_monoisotopic bool Is the element monoisotopic    
is_radioactive bool Is the element radioactive    
isotopes list Isotopes    
jmol_color str Element color in Jmol convention HEX [56]
lattice_constant float Lattice constant Angstrom  
lattice_structure str Lattice structure code    
mass_number int Mass number (most abundant isotope)    
melting_point float Melting temperature K  
mendeleev_number int Mendeleev’s number[5]   [34][48]
metallic_radius float Single-bond metallic radius pm [1]
metallic_radius_c12 float Metallic radius with 12 nearest neighbors pm [1]
molcas_gv_color str Element color in MOCAS GV convention HEX [57]
name str Name in English    
name_origin str Origin of the name    
neutrons int Number of neutrons (most abundant isotope)    
oxistates list Oxidation states    
period int Period in periodic table    
proton_affinity float Proton affinity kJ/mol [21]
protons int Number of protons    
sconst float Nuclear charge screening constants[6]   [14][15]
series int Index to chemical series    
sources str Sources of the element    
specific_heat float Specific heat @ 20 C J/(g mol)  
symbol str Chemical symbol    
thermal_conductivity float Thermal conductivity @25 C W/(m K)  
uses str Applications of the element    
vdw_radius float Van der Waals radius pm [21]
vdw_radius_alvarez float Van der Waals radius according to Alvarez[7] pm [5][49]
vdw_radius_batsanov float Van der Waals radius according to Batsanov pm [8]
vdw_radius_bondi float Van der Waals radius according to Bondi pm [9]
vdw_radius_dreiding float Van der Waals radius from the DREIDING FF pm [29]
vdw_radius_mm3 float Van der Waals radius from the MM3 FF pm [3]
vdw_radius_rt float Van der Waals radius according to Rowland and Taylor pm [40]
vdw_radius_truhlar float Van der Waals radius according to Truhlar pm [28]
vdw_radius_uff float Van der Waals radius from the UFF pm [39]

Isotopes

Name Type Comment Unit Data Source
abundance float Relative Abundance   [54]
g_factor float Nuclear g-factor[8]   [46]
half_life float Half life of the isotope   [30]
half_life_unit str Unit in which the half life is given   [30]
is_radioactive bool Is the isotope radioactive   [53]
mass float Atomic mass Da [53]
mass_number int Mass number of the isotope   [53]
mass_uncertainty float Uncertainty of the atomic mass   [53]
spin float Nuclear spin quantum number    
quadrupole_moment float Nuclear electric quadrupole moment[8] b [100 fm^2] [45]

Data Footnotes

[1](1, 2)

Atomic Weights

Atomic weights and their uncertainties were retrieved mainly from ref. [55]. For elements whose values were given as ranges the conventional atomic weights from Table 3 in ref. [30] were taken. For radioactive elements the standard approach was adopted where the weight is taken as the mass number of the most stable isotope. The data was obtained from CIAAW page on radioactive elements. In cases where two isotopes were specified the one with the smaller standard deviation was chosen. In case of Tc and Pm relative weights of their isotopes were used, for Tc isotope 98, and for Pm isotope 145 were taken from CIAAW.

[2]

Covalent Radius by Cordero et al.

In order to have a more homogeneous data for covalent radii taken from ref. [16] the values for 3 different valences for C, also the low and high spin values for Mn, Fe Co, were respectively averaged.

[3]

Electron affinity

Electron affinities were taken from [21] for the elements for which the data was available. For He, Be, N, Ar and Xe affinities were taken from [6] where they were specified for metastable ions and therefore the values are negative.

Updates

  • Electron affinity of niobium was taken from [25].
  • Electron affinity of cobalt was taken from [11].
  • Electron affinity of lead was taken from [12].
[4]

Allen’s configuration energies

The values of configurational energies from refs. [26] and [27] were taken as reported in eV without converting to Pauling units.

[5]

Mendeleev numbers

Mendeleev numbers were mostly taken from [48] but the range was extended to cover the whole periodic table following the prescription in the article of increasing the numbers going from top to bottom in each group and group by group from left to right in the periodic table.

[6]

Nuclear charge screening constants

The screening constants were calculated according to the following formula

\[\sigma_{n,l,m} = Z - n\cdot\zeta_{n,l,m}\]

where \(n\) is the principal quantum number, \(Z\) is the atomic number, \(\sigma_{n,l,m}\) is the screening constant, \(\zeta_{n,l,m}\) is the optimized exponent from [14][15].

For elements Nb, Mo, Ru, Rh, Pd and Ag the exponent values corresponding to the ground state electronic configuration were taken (entries with superscript a in Table II in [15]).

For elements La, Pr, Nd and Pm two exponent were reported for 4f shell denoted 4f and 4f’ in [15]. The value corresponding to 4f were used since according to the authors these are the dominant ones.

[7]

van der Waals radii according to Alvarez

The bulk of the radii data was taken from Ref. [5], but the radii for noble gasses were update according to the values in Ref. [49].

[8](1, 2)

Isotope g-factors and quadrupole moments

The data regarding g-factors and electric quadrupole moments was parsed from easyspin webpage (accessed 25.01.2017) where additional notes are mentioned:

  • Typo for Rh-103: Moment is factor of 10 too large
  • 237Np, 239Pu, 243Am magnetic moment data from [21], section 11-2
  • In quadrupole moment data - a typo for Ac-227: sign should be +

Electronegativities

Since electronegativity is useful concept rather than a physical observable, several scales of electronegativity exist and some of them are available in mendeleev. Depending on the definition of a particular scale the values are either stored directly or recomputed on demand with appropriate formulas. The following scales are stored:

Moreover there are electronegativity scales that can be computed from their respective definition and the atomic properties available in mendeleev:

For a short overview on electronegativity see this presentation.

All the examples shown below are for Silicon:

>>> from mendeleev import element
>>> Si = element('Si')

Allen

The electronegativity scale proposed by Allen in ref [2] can be defined as:

\[\chi_{A} = \frac{\sum_{x} n_{x}\varepsilon_{x}}{\sum_{x}n_{x}}\]

where: \(\varepsilon_{x}\) is the multiplet-averaged one-electron energy of the subshell \(x\) and \(n_{x}\) is the number of electrons in subshell \(x\) and the summation runs over the valence shell.

The values that are tabulated were obtained from refs. [26] and [27].

Example:

>>> Si.en_allen
11.33
>>> Si.electronegativity('allen')
11.33

Allred and Rochow

The scale of Allred and Rochow [4] introduces the electronegativity as the electrostatic force exerted on the electron by the nuclear charge:

\[\chi_{AR} = \frac{e^{2}Z_{\text{eff}}}{r^{2}} \notag\]

where: \(Z_{\text{eff}}\) is the effective nuclear charge and \(r\) is the covalent radius.

Example:

>>> Si.electronegativity('allred-rochow')
0.00028240190249702736

Cottrell and Sutton

The scale proposed by Cottrell and Sutton [17] is derived from the equation:

\[\chi_{CS} = \sqrt{\frac{Z_{\text{eff}}}{r}}\]

where: \(Z_{\text{eff}}\) is the effective nuclear charge and \(r\) is the covalent radius.

Example:

>>> Si.electronegativity('cottrell-sutton')
0.18099342720014772

Ghosh

Ghosh [18] presented a scale of electronegativity based on the absolute radii of atoms computed as

\[\chi_{GH} = a \cdot (1/R) + b\]

where: \(R\) is the absolute atomic radius and \(a\) and \(b\) are empirical parameters.

Example:

>>> Si.en_ghosh
0.178503

Gordy

Gordy’s scale [19] is based on the potential that measures the work necessary to achieve the charge separation, according to:

\[\chi_{G} = \frac{eZ_{\text{eff}}}{r}\]

where: \(Z_{\text{eff}}\) is the effective nuclear charge and \(r\) is the covalent radius.

Example:

>>> Si.electronegativity('gordy')
0.03275862068965517

Li and Xue

Li and Xue [23][24] proposed a scale that takes into account different valence states and coordination environment of atoms and is calculated according to the following formula:

\[\chi_{LX} = \frac{n^{*}\sqrt{I_{j}/Ry}}{r}\]

where: \(n^{*}\) is the effective principal quantum number, \(I_{j}\) is the j’th ionization energy in eV, \(Ry\) is the Rydberg constant in eV and \(r\) is either the crystal radius or ionic radius.

Example:

>>> Si.en_li_xue(charge=4)
{u'IV': 13.16033405547733, u'VI': 9.748395596649873}
>>> Si.electronegativity('li-xue', charge=4)
{u'IV': 13.16033405547733, u'VI': 9.748395596649873}

Martynov and Batsanov

Martynov and Batsanov [7] used the square root of the averaged valence ionization energy as a measure of electronegativity:

\[\chi_{MB} = \sqrt{\frac{1}{n_{v}}\sum^{n_{v}}_{k=1} I_{k}}\]

where: \(n_{v}\) is the number of valence electrons and \(I_{k}\) is the \(k\) th ionization potential.

Example:

>>> Si.en_martynov_batsanov()
5.0777041564076963
>>> Si.electronegativity(scale='martynov-batsanov')
5.0777041564076963

Mulliken

Mulliken scale [31] is defined as the arithmetic average of the ionization potential (\(IP\)) and the electron affinity (\(EA\)):

\[\chi_{M} = \frac{IP + EA}{2}\]

Example:

>>> Si.en_mulliken()
4.0758415
>>> Si.electronegativity('mulliken')
4.0758415

Nagle

Nagle [32] derived his scale from the atomic dipole polarizability:

\[\chi_{N} = \sqrt[3]{\frac{n}{\alpha}} \notag\]

Example:

>>> Si.electronegativity('nagle')
0.47505611644667534

Pauling

Pauling’s thermochemical scale was introduced in [33] as a relative scale based on electronegativity differences:

\[\chi_{A} - \chi_{B} = \sqrt{E_{d}(AB) - \frac{1}{2}\left[E_{d}(AA) + E_{d}(BB)\right] }\]

where: \(E_{d}(XY)\) is the bond dissociation energy of a diatomic \(XY\). The values available in mendeleev are taken from ref. [21].

Example:

>>> Si.en_pauling
1.9
>>> Si.electronegativity('pauling')
1.9

Sanderson

Sanderson [41][42] established his scale of electronegativity based on the stability ratio:

\[\chi_{S} = \frac{\rho}{\rho_{\text{ng}}}\]

where: \(\rho\) is the average electron density \(\rho=\frac{Z}{4\pi r^{3}/3}\), and \(\rho_{\text{ng}}\) is the average electron density of a hypothetical noble gas atom with charge \(Z\).

Example:

>>> Si.en_sanderson()
0.3468157872145231
>>> Si.electronegativity()
0.3468157872145231

Bibliography

[1](1, 2) Kyle & laby tables of physical & chemical constants. (2017). 3.7.5 atomic radii. [Online; accessed 30-April-2017]. URL: http://www.kayelaby.npl.co.uk/chemistry/3_7/3_7_5.html.
[2]Leland C Allen. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111(25):9003–9014, 1989. doi:10.1021/ja00207a003.
[3]Norman L. Allinger, Xuefeng Zhou, and John Bergsma. Molecular mechanics parameters. Journal of Molecular Structure: THEOCHEM, 312(1):69–83, jan 1994. URL: http://linkinghub.elsevier.com/retrieve/pii/S0166128009800080, doi:10.1016/S0166-1280(09)80008-0.
[4]A Louis Allred and E G Rochow. A scale of electronegativity based on electrostatic force. Journal of Inorganic and Nuclear Chemistry, 5(4):264–268, jan 1958. URL: http://linkinghub.elsevier.com/retrieve/pii/0022190258800032, doi:10.1016/0022-1902(58)80003-2.
[5](1, 2) Santiago Alvarez. A cartography of the van der Waals territories. Dalton Transactions, 42(24):8617, 2013. doi:10.1039/c3dt50599e.
[6](1, 2) T. Andersen. Atomic negative ions: structure, dynamics and collisions. Physics Reports, 394(4-5):157–313, may 2004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0370157304000316, doi:10.1016/j.physrep.2004.01.001.
[7]Stepan S Batsanov. Dielectric Methods of Studying the Chemical Bond and the Concept of Electronegativity. Russian Chemical Reviews, 51(7):684–697, jul 1982. URL: http://stacks.iop.org/0036-021X/51/i=7/a=R08?key=crossref.14f2fec4c742d81d9efd6ad10be9ac6a, doi:10.1070/RC1982v051n07ABEH002900.
[8]Stepan S Batsanov. Van der Waals radii of elements. Inorganic materials, 37(9):871–885, 2001. URL: http://www.springerlink.com/index/wh8425p357657518.pdf, doi:10.1023/A:1011625728803.
[9]A Bondi. van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3):441–451, 1964. URL: http://pubs.acs.org/doi/abs/10.1021/j100785a001, doi:10.1021/j100785a001.
[10]W. Lawrence Bragg. The arrangement of atoms in crystals. Philosophical Magazine, 40(236):169–189, aug 1920. URL: http://www.tandfonline.com/doi/abs/10.1080/14786440808636111, doi:10.1080/14786440808636111.
[11]Xiaolin Chen and Chuangang Ning. Accurate electron affinity of Co and fine-structure splittings of Co\$ˆ-\$ via slow-electron velocity-map imaging. Physical Review A, 93(5):052508, may 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.93.052508, doi:10.1103/PhysRevA.93.052508.
[12]Xiaolin Chen and Chuangang Ning. Accurate electron affinity of Pb and isotope shifts of binding energies of Pb-. The Journal of Chemical Physics, 145(8):084303, aug 2016. URL: http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961654, doi:10.1063/1.4961654.
[13]X Chu and Alexander Dalgarno. Linear response time-dependent density functional theory for van der Waals coefficients. The Journal of chemical physics, 121(9):4083–8, sep 2004. URL: http://www.ncbi.nlm.nih.gov/pubmed/15332953, doi:10.1063/1.1779576.
[14](1, 2) Enrico Clementi and D L Raimondi. Atomic Screening Constants from SCF Functions. The Journal of Chemical Physics, 38(11):2686, 1963. URL: http://scitation.aip.org/content/aip/journal/jcp/38/11/10.1063/1.1733573, doi:10.1063/1.1733573.
[15](1, 2, 3, 4) Enrico Clementi, D L Raimondi, and William P Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics, 47(4):1300, 1967. URL: http://scitation.aip.org/content/aip/journal/jcp/47/4/10.1063/1.1712084, doi:10.1063/1.1712084.
[16](1, 2) Beatriz Cordero, Verónica Gómez, Ana E Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. Covalent radii revisited. Dalton Transactions, pages 2832, 2008. URL: http://xlink.rsc.org/?DOI=b801115j, doi:10.1039/b801115j.
[17]T. L. Cottrell and L. E. Sutton. Covalency, Electrovalency and Electronegativity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 207(1088):49–63, jun 1951. URL: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1951.0098, doi:10.1098/rspa.1951.0098.
[18](1, 2) Dulal C Ghosh. A NEW SCALE OF ELECTRONEGATIVITY BASED ON ABSOLUTE RADII OF ATOMS. Journal of Theoretical and Computational Chemistry, 04(01):21–33, mar 2005. URL: http://www.worldscientific.com/doi/abs/10.1142/S0219633605001556, doi:10.1142/S0219633605001556.
[19]Walter Gordy. A New Method of Determining Electronegativity from Other Atomic Properties. Physical Review, 69(11-12):604–607, jun 1946. URL: http://link.aps.org/doi/10.1103/PhysRev.69.604, doi:10.1103/PhysRev.69.604.
[20]Tim Gould and Tomáš Bučko. C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table. Journal of Chemical Theory and Computation, 12(8):3603–3613, aug 2016. URL: http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00361, doi:10.1021/acs.jctc.6b00361.
[21](1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) William M Haynes. CRC Handbook of Chemistry and Physics. 100 Key Points. CRC Press, London, 95th edition, 2014. ISBN 9781482208689. URL: https://books.google.no/books?id=bNDMBQAAQBAJ.
[22]A Kramida, Yu Ralchenko, J Reader, and and NIST ASD Team. Nist atomic spectra database (ver. 5.3), national institute of standards and technology, gaithersburg, md. 2015. [Online; accessed 13-April-2015]. URL: http://physics.nist.gov/asd.
[23]Keyan Li and Dongfeng Xue. Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 110(39):11332–11337, oct 2006. URL: http://pubs.acs.org/doi/abs/10.1021/jp062886k, doi:10.1021/jp062886k.
[24]KeYan Li and DongFeng Xue. New development of concept of electronegativity. Chinese Science Bulletin, 54(2):328–334, jan 2009. URL: http://link.springer.com/10.1007/s11434-008-0578-9, doi:10.1007/s11434-008-0578-9.
[25]Zhihong Luo, Xiaolin Chen, Jiaming Li, and Chuangang Ning. Precision measurement of the electron affinity of niobium. Physical Review A, 93(2):020501, feb 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.93.020501, doi:10.1103/PhysRevA.93.020501.
[26](1, 2, 3) Joseph B Mann, Terry L Meek, and Leland C Allen. Configuration Energies of the Main Group Elements. Journal of the American Chemical Society, 122(12):2780–2783, mar 2000. URL: http://pubs.acs.org/doi/abs/10.1021/ja992866e, doi:10.1021/ja992866e.
[27](1, 2, 3) Joseph B Mann, Terry L Meek, Eugene T Knight, Joseph F Capitani, and Leland C Allen. Configuration Energies of the d-Block Elements. Journal of the American Chemical Society, 122(21):5132–5137, may 2000. URL: http://pubs.acs.org/doi/abs/10.1021/ja9928677, doi:10.1021/ja9928677.
[28]Manjeera Mantina, Adam C Chamberlin, Rosendo Valero, Christopher J Cramer, and Donald G Truhlar. Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A, 113(19):5806–5812, may 2009. URL: http://pubs.acs.org/doi/abs/10.1021/jp8111556, doi:10.1021/jp8111556.
[29]Stephen L. Mayo, Barry D. Olafson, and William A Goddard III. DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry, 94(26):8897–8909, dec 1990. URL: http://pubs.acs.org/doi/abs/10.1021/j100389a010, doi:10.1021/j100389a010.
[30](1, 2, 3, 4, 5) Juris Meija, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk, and Thomas Prohaska. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3):265–291, jan 2016. URL: http://www.degruyter.com/view/j/pac.2016.88.issue-3/pac-2015-0305/pac-2015-0305.xml, doi:10.1515/pac-2015-0305.
[31](1, 2) Robert S Mulliken. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. The Journal of Chemical Physics, 2(11):782, 1934. URL: http://scitation.aip.org/content/aip/journal/jcp/2/11/10.1063/1.1749394, doi:10.1063/1.1749394.
[32]Jeffrey K. Nagle. Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12):4741–4747, jun 1990. URL: http://pubs.acs.org/doi/abs/10.1021/ja00168a019, doi:10.1021/ja00168a019.
[33]Linus Pauling. THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9):3570–3582, sep 1932. URL: http://pubs.acs.org/doi/abs/10.1021/ja01348a011, doi:10.1021/ja01348a011.
[34]D G Pettifor. A chemical scale for crystal-structure maps. Solid State Communications, 51(1):31–34, jul 1984. URL: http://www.sciencedirect.com/science/article/pii/0038109884907658, doi:10.1016/0038-1098(84)90765-8.
[35]Pekka Pyykkö and Michiko Atsumi. Molecular Double-Bond Covalent Radii for Elements Li-E112. Chemistry - A European Journal, 15(46):12770–12779, nov 2009. URL: http://doi.wiley.com/10.1002/chem.200901472, doi:10.1002/chem.200901472.
[36]Pekka Pyykkö and Michiko Atsumi. Molecular Single-Bond Covalent Radii for Elements 1-118. Chemistry - A European Journal, 15(1):186–197, jan 2009. URL: http://doi.wiley.com/10.1002/chem.200800987, doi:10.1002/chem.200800987.
[37]Pekka Pyykkö, Sebastian Riedel, and Michael Patzschke. Triple-Bond Covalent Radii. Chemistry - A European Journal, 11(12):3511–3520, jun 2005. URL: http://doi.wiley.com/10.1002/chem.200401299, doi:10.1002/chem.200401299.
[38]Martin Rahm, Roald Hoffmann, and N. W. Ashcroft. Atomic and Ionic Radii of Elements 1-96. Chemistry - A European Journal, 22(41):14625–14632, oct 2016. URL: http://doi.wiley.com/10.1002/chem.201602949, doi:10.1002/chem.201602949.
[39]A K Rappe, C. J. Casewit, K. S. Colwell, William A Goddard III, and W. M. Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25):10024–10035, dec 1992. URL: http://pubs.acs.org/doi/abs/10.1021/ja00051a040, doi:10.1021/ja00051a040.
[40]R Scott Rowland and Robin Taylor. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. The Journal of Physical Chemistry, 100(18):7384–7391, 1996. doi:10.1021/jp953141+.
[41]R T Sanderson. An Interpretation of Bond Lengths and a Classification of Bonds. Science, 114(2973):670–672, dec 1951. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.114.2973.670, doi:10.1126/science.114.2973.670.
[42]R T Sanderson. An Explanation of Chemical Variations within Periodic Major Groups. Journal of the American Chemical Society, 74(19):4792–4794, oct 1952. URL: http://pubs.acs.org/doi/abs/10.1021/ja01139a020, doi:10.1021/ja01139a020.
[43]R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5):751–767, 1976. doi:10.1107/S0567739476001551.
[44]John C Slater. Atomic Radii in Crystals. The Journal of Chemical Physics, 41(10):3199, 1964. URL: http://scitation.aip.org/content/aip/journal/jcp/41/10/10.1063/1.1725697, doi:10.1063/1.1725697.
[45]N Stone. Table of nuclear quadrupole moments, international atomic energy agency, indc(nds)-650. December 2013. URL: https://www-nds.iaea.org/publications/indc/indc-nds-0650.pdf.
[46]N Stone. Table of nuclear magnetic dipole and electric quadrupole moments, international atomic energy agency, indc(nds)-0658. February 2014. URL: https://www-nds.iaea.org/publications/indc/indc-nds-0658.pdf.
[47]K T Tang, J M Norbeck, and P R Certain. Upper and lower bounds of two- and three-body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions. The Journal of Chemical Physics, 64(7):3063, 1976. URL: http://scitation.aip.org/content/aip/journal/jcp/64/7/10.1063/1.432569, doi:10.1063/1.432569.
[48](1, 2) P. Villars, K. Cenzual, J. Daams, Y. Chen, and S. Iwata. Data-driven atomic environment prediction for binaries using the Mendeleev number. Journal of Alloys and Compounds, 367(1-2):167–175, mar 2004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0925838803008004, doi:10.1016/j.jallcom.2003.08.060.
[49](1, 2) Jürgen Vogt and Santiago Alvarez. van der Waals Radii of Noble Gases. Inorganic Chemistry, 53(17):9260–9266, sep 2014. URL: http://pubs.acs.org/doi/abs/10.1021/ic501364h, doi:10.1021/ic501364h.
[50](1, 2) W M White. Geochemistry. Wiley, 2013. ISBN 9781118485255. URL: https://books.google.no/books?id=QPH1nY8WztkC.
[51]Wikipedia. Goldschmidt classification — wikipedia, the free encyclopedia. [Online; accessed 30-April-2017]. URL: https://en.wikipedia.org/w/index.php?title=Goldschmidt_classification&oldid=775842423.
[52]Wikipedia. Cpk coloring — wikipedia, the free encyclopedia. 2017. [Online; accessed 5-October-2017]. URL: https://en.wikipedia.org/w/index.php?title=CPK_coloring&oldid=802098372.
[53](1, 2, 3, 4) IUPAC-CIAAW. Atomic masses. [Online; accessed 7-January-2017]. URL: hhttp://ciaaw.org/atomic-masses.htm.
[54]IUPAC-CIAAW. Isotopic abundances. [Online; accessed 7-January-2017]. URL: http://ciaaw.org/isotopic-abundances.htm.
[55](1, 2, 3) IUPAC-CIAAW. Standard atomic weights. [Online; accessed 1-January-2017]. URL: http://www.ciaaw.org/atomic-weights.htm.
[56]Jmol Team. Jmol colors. [Online; accessed 5-October-2017]. URL: http://jmol.sourceforge.net/jscolors/#color_U.
[57]MOLCAS Team. Molcas gv colors. [Online; accessed 5-October-2017]. URL: http://www.molcas.org/GV/.
[58]Schwerdtfeger, Peter. Table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements (in atomic units). 2014. URL: http://ctcp.massey.ac.nz/Tablepol2014.pdf.