Bibliography

[1]

Kyle & laby tables of physical & chemical constants. (2017). 3.7.5 atomic radii. [Online; accessed 30-April-2017]. URL: http://www.kayelaby.npl.co.uk/chemistry/3_7/3_7_5.html.

[2]

Leland C Allen. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111(25):9003–9014, 1989. doi:10.1021/ja00207a003.

[3]

Norman L. Allinger, Xuefeng Zhou, and John Bergsma. Molecular mechanics parameters. Journal of Molecular Structure: THEOCHEM, 312(1):69–83, jan 1994. URL: http://linkinghub.elsevier.com/retrieve/pii/S0166128009800080, doi:10.1016/S0166-1280(09)80008-0.

[4]

A Louis Allred and E G Rochow. A scale of electronegativity based on electrostatic force. Journal of Inorganic and Nuclear Chemistry, 5(4):264–268, jan 1958. URL: http://linkinghub.elsevier.com/retrieve/pii/0022190258800032, doi:10.1016/0022-1902(58)80003-2.

[5]

Santiago Alvarez. A cartography of the van der Waals territories. Dalton Transactions, 42(24):8617, 2013. doi:10.1039/c3dt50599e.

[6]

T. Andersen. Atomic negative ions: structure, dynamics and collisions. Physics Reports, 394(4-5):157–313, may 2004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0370157304000316, doi:10.1016/j.physrep.2004.01.001.

[7]

Stepan S Batsanov. Dielectric Methods of Studying the Chemical Bond and the Concept of Electronegativity. Russian Chemical Reviews, 51(7):684–697, jul 1982. URL: http://stacks.iop.org/0036-021X/51/i=7/a=R08?key=crossref.14f2fec4c742d81d9efd6ad10be9ac6a, doi:10.1070/RC1982v051n07ABEH002900.

[8]

Stepan S Batsanov. Van der Waals radii of elements. Inorganic materials, 37(9):871–885, 2001. URL: http://www.springerlink.com/index/wh8425p357657518.pdf, doi:10.1023/A:1011625728803.

[9]

A Bondi. van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3):441–451, 1964. URL: http://pubs.acs.org/doi/abs/10.1021/j100785a001, doi:10.1021/j100785a001.

[10]

W. Lawrence Bragg. The arrangement of atoms in crystals. Philosophical Magazine, 40(236):169–189, aug 1920. URL: http://www.tandfonline.com/doi/abs/10.1080/14786440808636111, doi:10.1080/14786440808636111.

[11]

Xiaolin Chen and Chuangang Ning. Accurate electron affinity of Co and fine-structure splittings of Co\$ˆ-\$ via slow-electron velocity-map imaging. Physical Review A, 93(5):052508, may 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.93.052508, doi:10.1103/PhysRevA.93.052508.

[12]

Xiaolin Chen and Chuangang Ning. Accurate electron affinity of Pb and isotope shifts of binding energies of Pb-. The Journal of Chemical Physics, 145(8):084303, aug 2016. URL: http://scitation.aip.org/content/aip/journal/jcp/145/8/10.1063/1.4961654, doi:10.1063/1.4961654.

[13]

X Chu and Alexander Dalgarno. Linear response time-dependent density functional theory for van der Waals coefficients. The Journal of chemical physics, 121(9):4083–8, sep 2004. URL: http://www.ncbi.nlm.nih.gov/pubmed/15332953, doi:10.1063/1.1779576.

[14]

Enrico Clementi and D L Raimondi. Atomic Screening Constants from SCF Functions. The Journal of Chemical Physics, 38(11):2686, 1963. URL: http://scitation.aip.org/content/aip/journal/jcp/38/11/10.1063/1.1733573, doi:10.1063/1.1733573.

[15]

Enrico Clementi, D L Raimondi, and William P Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics, 47(4):1300, 1967. URL: http://scitation.aip.org/content/aip/journal/jcp/47/4/10.1063/1.1712084, doi:10.1063/1.1712084.

[16]

Beatriz Cordero, Verónica Gómez, Ana E Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. Covalent radii revisited. Dalton Transactions, pages 2832, 2008. URL: http://xlink.rsc.org/?DOI=b801115j, doi:10.1039/b801115j.

[17]

T. L. Cottrell and L. E. Sutton. Covalency, Electrovalency and Electronegativity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 207(1088):49–63, jun 1951. URL: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1951.0098, doi:10.1098/rspa.1951.0098.

[18]

Dulal C Ghosh. A NEW SCALE OF ELECTRONEGATIVITY BASED ON ABSOLUTE RADII OF ATOMS. Journal of Theoretical and Computational Chemistry, 04(01):21–33, mar 2005. URL: http://www.worldscientific.com/doi/abs/10.1142/S0219633605001556, doi:10.1142/S0219633605001556.

[19]

Henning Glawe, Antonio Sanna, E K U Gross, and Miguel A L Marques. The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining. New Journal of Physics, 18(9):093011, sep 2016. URL: http://stacks.iop.org/1367-2630/18/i=9/a=093011?key=crossref.32680d846cd18e9182d769c453b6099e, doi:10.1088/1367-2630/18/9/093011.

[20]

Walter Gordy. A New Method of Determining Electronegativity from Other Atomic Properties. Physical Review, 69(11-12):604–607, jun 1946. URL: http://link.aps.org/doi/10.1103/PhysRev.69.604, doi:10.1103/PhysRev.69.604.

[21]

Tim Gould and Tomáš Bučko. C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table. Journal of Chemical Theory and Computation, 12(8):3603–3613, aug 2016. URL: http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00361, doi:10.1021/acs.jctc.6b00361.

[22]

W.M. Haynes. CRC Handbook of Chemistry and Physics. CRC Press, 97th edition, 2016. ISBN 9781498754293. URL: https://books.google.no/books?id=VVezDAAAQBAJ.

[23]

William M Haynes. CRC Handbook of Chemistry and Physics. 100 Key Points. CRC Press, London, 95th edition, 2014. ISBN 9781482208689. URL: https://books.google.no/books?id=bNDMBQAAQBAJ.

[24]

Stephen R. Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi. Inchi, the iupac international chemical identifier. Journal of Cheminformatics, 7:23, 2015. [Online; accessed 25-September-22], IUPAC link: http://www.iupac.org/inchi/. URL: https://doi.org/10.1186/s13321-015-0068-4, doi:10.1186/s13321-015-0068-4.

[25]

F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, and G. Audi. The NUBASE2020 evaluation of nuclear physics properties \ast . Chinese Physics C, 45(3):030001, mar 2021. Data file: https://www.anl.gov/sites/www/files/2022-11/nubase_4.mas20.txt. URL: https://doi.org/10.1088/1674-1137/abddae, doi:10.1088/1674-1137/abddae.

[26]

A Kramida, Yu Ralchenko, J Reader, and and NIST ASD Team. Nist atomic spectra database (ver. 5.3), national institute of standards and technology, gaithersburg, md. 2015. [Online; accessed 13-April-2015]. URL: http://physics.nist.gov/asd.

[27]

Keyan Li and Dongfeng Xue. Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 110(39):11332–11337, oct 2006. URL: http://pubs.acs.org/doi/abs/10.1021/jp062886k, doi:10.1021/jp062886k.

[28]

KeYan Li and DongFeng Xue. New development of concept of electronegativity. Chinese Science Bulletin, 54(2):328–334, jan 2009. URL: http://link.springer.com/10.1007/s11434-008-0578-9, doi:10.1007/s11434-008-0578-9.

[29]

Daniel Lundberg and Ingmar Persson. The size of actinoid(iii) ions - structural analysis vs. common misinterpretations. Coordination Chemistry Reviews, 318:131–134, 2016. URL: https://www.sciencedirect.com/science/article/pii/S0010854515300862, doi:https://doi.org/10.1016/j.ccr.2016.04.003.

[30]

Zhihong Luo, Xiaolin Chen, Jiaming Li, and Chuangang Ning. Precision measurement of the electron affinity of niobium. Physical Review A, 93(2):020501, feb 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.93.020501, doi:10.1103/PhysRevA.93.020501.

[31]

Joseph B Mann, Terry L Meek, and Leland C Allen. Configuration Energies of the Main Group Elements. Journal of the American Chemical Society, 122(12):2780–2783, mar 2000. URL: http://pubs.acs.org/doi/abs/10.1021/ja992866e, doi:10.1021/ja992866e.

[32]

Joseph B Mann, Terry L Meek, Eugene T Knight, Joseph F Capitani, and Leland C Allen. Configuration Energies of the d-Block Elements. Journal of the American Chemical Society, 122(21):5132–5137, may 2000. URL: http://pubs.acs.org/doi/abs/10.1021/ja9928677, doi:10.1021/ja9928677.

[33]

Manjeera Mantina, Adam C Chamberlin, Rosendo Valero, Christopher J Cramer, and Donald G Truhlar. Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A, 113(19):5806–5812, may 2009. URL: http://pubs.acs.org/doi/abs/10.1021/jp8111556, doi:10.1021/jp8111556.

[34]

Stephen L. Mayo, Barry D. Olafson, and William A Goddard III. DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry, 94(26):8897–8909, dec 1990. URL: http://pubs.acs.org/doi/abs/10.1021/j100389a010, doi:10.1021/j100389a010.

[35]

Juris Meija, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk, and Thomas Prohaska. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3):265–291, jan 2016. URL: http://www.degruyter.com/view/j/pac.2016.88.issue-3/pac-2015-0305/pac-2015-0305.xml, doi:10.1515/pac-2015-0305.

[36]

Robert S Mulliken. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. The Journal of Chemical Physics, 2(11):782, 1934. URL: http://scitation.aip.org/content/aip/journal/jcp/2/11/10.1063/1.1749394, doi:10.1063/1.1749394.

[37]

Jeffrey K. Nagle. Atomic polarizability and electronegativity. Journal of the American Chemical Society, 112(12):4741–4747, jun 1990. URL: http://pubs.acs.org/doi/abs/10.1021/ja00168a019, doi:10.1021/ja00168a019.

[38]

National Institute of Standards and Technology. Nist chemistry webbook, standard reference database number 69. [Online; accessed 27-September-2022]. URL: https://webbook.nist.gov/chemistry/.

[39]

Robert G. Parr, László v. Szentpály, and Shubin Liu. Electrophilicity index. Journal of the American Chemical Society, 121(9):1922–1924, 1999. URL: https://doi.org/10.1021/ja983494x, arXiv:https://doi.org/10.1021/ja983494x, doi:10.1021/ja983494x.

[40]

Linus Pauling. THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9):3570–3582, sep 1932. URL: http://pubs.acs.org/doi/abs/10.1021/ja01348a011, doi:10.1021/ja01348a011.

[41]

D G Pettifor. A chemical scale for crystal-structure maps. Solid State Communications, 51(1):31–34, jul 1984. URL: http://www.sciencedirect.com/science/article/pii/0038109884907658, doi:10.1016/0038-1098(84)90765-8.

[42]

Pekka Pyykkö and Michiko Atsumi. Molecular Double-Bond Covalent Radii for Elements Li-E112. Chemistry - A European Journal, 15(46):12770–12779, nov 2009. URL: http://doi.wiley.com/10.1002/chem.200901472, doi:10.1002/chem.200901472.

[43]

Pekka Pyykkö and Michiko Atsumi. Molecular Single-Bond Covalent Radii for Elements 1-118. Chemistry - A European Journal, 15(1):186–197, jan 2009. URL: http://doi.wiley.com/10.1002/chem.200800987, doi:10.1002/chem.200800987.

[44]

Pekka Pyykkö, Sebastian Riedel, and Michael Patzschke. Triple-Bond Covalent Radii. Chemistry - A European Journal, 11(12):3511–3520, jun 2005. URL: http://doi.wiley.com/10.1002/chem.200401299, doi:10.1002/chem.200401299.

[45]

Martin Rahm, Roald Hoffmann, and N. W. Ashcroft. Atomic and Ionic Radii of Elements 1-96. Chemistry - A European Journal, 22(41):14625–14632, oct 2016. URL: http://doi.wiley.com/10.1002/chem.201602949, doi:10.1002/chem.201602949.

[46]

Martin Rahm, Roald Hoffmann, and N. W. Ashcroft. Corrigendum: Atomic and Ionic Radii of Elements 1-96. Chemistry - A European Journal, 23(16):4017–4017, mar 2017. URL: http://doi.wiley.com/10.1002/chem.201700610, doi:10.1002/chem.201700610.

[47]

A K Rappe, C. J. Casewit, K. S. Colwell, William A Goddard III, and W. M. Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25):10024–10035, dec 1992. URL: http://pubs.acs.org/doi/abs/10.1021/ja00051a040, doi:10.1021/ja00051a040.

[48]

R Scott Rowland and Robin Taylor. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. The Journal of Physical Chemistry, 100(18):7384–7391, 1996. doi:10.1021/jp953141+.

[49]

R T Sanderson. An Interpretation of Bond Lengths and a Classification of Bonds. Science, 114(2973):670–672, dec 1951. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.114.2973.670, doi:10.1126/science.114.2973.670.

[50]

R T Sanderson. An Explanation of Chemical Variations within Periodic Major Groups. Journal of the American Chemical Society, 74(19):4792–4794, oct 1952. URL: http://pubs.acs.org/doi/abs/10.1021/ja01139a020, doi:10.1021/ja01139a020.

[51]

Peter Schwerdtfeger and Jeffrey K. Nagle. 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Molecular Physics, 0(0):1–26, oct 2018. URL: https://doi.org/00268976.2018.1535143 https://www.tandfonline.com/doi/full/10.1080/00268976.2018.1535143, doi:10.1080/00268976.2018.1535143.

[52]

R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5):751–767, 1976. doi:10.1107/S0567739476001551.

[53]

John C Slater. Atomic Radii in Crystals. The Journal of Chemical Physics, 41(10):3199, 1964. URL: http://scitation.aip.org/content/aip/journal/jcp/41/10/10.1063/1.1725697, doi:10.1063/1.1725697.

[54]

N Stone. Table of nuclear quadrupole moments, international atomic energy agency, indc(nds)-650. December 2013. URL: https://www-nds.iaea.org/publications/indc/indc-nds-0650.pdf.

[55]

N Stone. Table of nuclear magnetic dipole and electric quadrupole moments, international atomic energy agency, indc(nds)-0658. February 2014. URL: https://www-nds.iaea.org/publications/indc/indc-nds-0658.pdf.

[56]

K T Tang, J M Norbeck, and P R Certain. Upper and lower bounds of two- and three-body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions. The Journal of Chemical Physics, 64(7):3063, 1976. URL: http://scitation.aip.org/content/aip/journal/jcp/64/7/10.1063/1.432569, doi:10.1063/1.432569.

[57]

P. Villars, K. Cenzual, J. Daams, Y. Chen, and S. Iwata. Data-driven atomic environment prediction for binaries using the Mendeleev number. Journal of Alloys and Compounds, 367(1-2):167–175, mar 2004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0925838803008004, doi:10.1016/j.jallcom.2003.08.060.

[58]

Jürgen Vogt and Santiago Alvarez. van der Waals Radii of Noble Gases. Inorganic Chemistry, 53(17):9260–9266, sep 2014. URL: http://pubs.acs.org/doi/abs/10.1021/ic501364h, doi:10.1021/ic501364h.

[59]

W M White. Geochemistry. Wiley, 2013. ISBN 9781118485255. URL: https://books.google.no/books?id=QPH1nY8WztkC.

[60]

Wikipedia. Goldschmidt classification — wikipedia, the free encyclopedia. [Online; accessed 30-April-2017]. URL: https://en.wikipedia.org/w/index.php?title=Goldschmidt_classification&oldid=775842423.

[61]

Wikipedia. Cpk coloring — wikipedia, the free encyclopedia. 2017. [Online; accessed 5-October-2017]. URL: https://en.wikipedia.org/w/index.php?title=CPK_coloring&oldid=802098372.

[62]

IUPAC-CIAAW. Atomic masses. [Online; accessed 25-September-2022, data file: https://ciaaw.org/data/IUPAC-atomic-masses.csv, last updated: 17 March 2021]. URL: https://ciaaw.org/atomic-masses.htm.

[63]

IUPAC-CIAAW. Standard atomic weights. [Online; accessed 1-January-2017]. URL: http://www.ciaaw.org/atomic-weights.htm.

[64]

Jmol Team. Jmol colors. [Online; accessed 5-October-2017]. URL: http://jmol.sourceforge.net/jscolors/#color_U.

[65]

MOLCAS Team. Molcas gv colors. [Online; accessed 5-October-2017]. URL: http://www.molcas.org/GV/.

[66]

Wikipedia contributors. List of chemical elements — Wikipedia, the free encyclopedia. 2021. [Online; accessed 30-August-2021]. URL: https://en.wikipedia.org/w/index.php?title=List_of_chemical_elements&oldid=1039678864.

[67]

Wikipedia contributors. Oxidation state — Wikipedia, the free encyclopedia. 2022. [Online; accessed 28-September-2022]. URL: https://en.wikipedia.org/w/index.php?title=Oxidation_state&oldid=1102394064.