Advanced visulization tutorial¶
mendeleev
support two interactive plotting backends
Note¶
Depending on your environment being the classic jupyter notebook or jupyterlab you might have to do additional configuration steps, so if you’re not getting expected results see plotly of bokeh documentation.
Accessing lower level plotting functions¶
There are two plotting functions for each of the backends:
periodic_table_plotly
inmendeleev.vis.plotly
periodic_table_bokeh
inmendeleev.vis.bokeh
that you can use to customize the visualizations even further.
Both functions take the same keyword arguments as the periodic_table
function but the also require a DataFrame
with periodic table data. You can get the default data using the create_vis_dataframe
function. Let’s start with an example using the plotly
backend.
[1]:
from mendeleev.vis import create_vis_dataframe, periodic_table_plotly
[2]:
elements = create_vis_dataframe()
periodic_table_plotly(elements)
/home/docs/checkouts/readthedocs.org/user_builds/mendeleev/envs/stable/lib/python3.8/site-packages/mendeleev/vis/utils.py:34: FutureWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values inplace instead of always setting a new array. To retain the old behavior, use either `df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newvals)`
elements.loc[elements[y_coord].notnull(), "y"] = elements.loc[